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ABSTRACT

The essentially non-oscillatory (ENO) finite difference scheme is applied to systems

of conservation laws u_ + f(u)x = 0 of mixed hyperbolic-elliptic type. A flux splitting

f(u) = f+(u) ÷ f-(u), with the corresponding Jacobi matrices aft(u) having real and pos-au

itive/negative eigenvalues, is used. The hyperbolic ENO operator is applied separately on

f+(u)x and on f-(u)_. The scheme is numerically tested on the van der Waals equation in

fluid dynamics. We observe convergence with good resolution to weak solutions for various

Riemann problems, which are then numerically checked to be admissible as the viscosity-

capillarity limits. We also observe the interesting phenomena of the shrinking of elliptic

regions if they are present in the initial conditions.
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No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science and

Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. Research also was partially

supported by NSF Grant DMS-88-10150, NASA Langley Grant NAG-l-l145 and AFOSR Grant 90-0093.





1 Introduction

The system of conservation laws

{ u, + f(u):: = 0u(x,O) = u°(x) (i.i)

is hyperbolic if the Jacobi matrix of(u) has real eigenvalues and a complete set of eigen-
Ou

vectors. In recent years there have been a lot of activity in designing stable and accurate

numerical methods for solving systems of hyperbolic conservation laws. The ENO (essen-

tially non-oscillatory) high order finite difference method, [5], [6], [12], [13], is one of the

successful approaches. The philosophy of ENO schemes is to use upwinding and adaptive

stencils, based on the local "wind" direction (the sign of the relevant eigenvalue) and the

local smoothness, in each of the local characteristic fields. ENO schemes can resolve the

interactions of shocks and waves and complicated wave structures quite well, according to

the numerical examples for the hyperbolic Euler equations of a polytropic gas in [6], [13].

ENO schemes are formally high order accurate, measured by local truncation errors. In some

cases the actual order of accuracy may degenerate due to the frequent switching of stencils in

the linearly unstable regions [9], [14]. There is a simple modification of ENO schemes, with

no additional computational cost, [14], which overcomes this accuracy degeneracy problem.

However, our experience seems to show that the original ENO scheme has very good resolu-

tion for nonlinear systems [13], [14], suggesting that the modification may not be necessary

in such cases.

If the Jacobi matrix of(u) in (1.1) has complex eigenvalues, the system becomes elliptic.Ou

The initial value problem (1.1) may not be well posed in the elliptic regions. However, in

applications, (1.1) may still be of mixed hyperbolic-elliptic type. Examples include equations

in fluid dynamics [17], elasticity [8] and the partial differential equations related to Lorenz

systems [7], just to name a few. In this paper we use the van der Waals equation in fluid

dynamics

w,-v. =0 (1.2)
w(x,0) =

with

RT a

p(w) - w - b w 2 (1.3)

where R, T, a, b are all positive constants, for our numerical examples. See, for example, [17]

for details. Equation (1.2) corresponds to (1.1) with u = (v,w) T, f(u) = (p(w),-v) T. The



two eigenvalues of the Jacobi matrix of(U)ouare -t-_. For an ideal gas, the pressure p(w)

is a decreasing function of w, resulting in a hyperbolic system (1.2). However, during the

co-existence of gas and liquid, p_(w) may become positive within an interval, as in the case

(1.3) with suitable parameters (Figure 1), making the system (1.2) elliptic in this region. The

mathematical ill-posedness of the system in the elliptic region reveals the physical fact that

the state in the elliptic region is not stable, and it typically evolves into "phase transitions",

i.e., jumps across the elliptic regions in the weak solution. As in the hyperbolic case, there can

be more than one weak solution, and there are efforts in the literature, e.g., [15],[16], [8], [2],

[3], [10], [11], to establish admissibility criteria with the goal to single out one "physically

relevant" weak solution. A weak solution u = (v,w) of (1.2) is called admissible as the

viscosity-capillarity limits in [15] if it is the bounded a.e. limit of u" = (v', w'), satisfying

v Z + p(w')= = ev== - dAw===,
wZ- vi = 0

= ,,°(=), ,.,,'(=,o)=
1

as e _ 0 +. Here A is a positive constant, usually between 0 and _.

starts with the Riemann problem

(1.4)

The analysis usually

{ = < o (1.5)(v(=,o),,.,,(=,o))= (v,,,w,,,), ,, > o

whose solutions contain most of the rich features (shocks, phase boundaries, rarefaction

waves, etc.) for more general initial conditions. It is easier to consider each jump (shock,

phase transition) separately, with a jump called locally admissible if it is the limit of the

travelling wave solutions of (1.4). A weak solution is then called locally admissible if each

of its jumps is locally admissible. Admissible or locally admissible solutions of the Riemann

problems, e.g. [15],[10],[3], typically contain phase boundaries (discontinuities jumping across

the elliptic regions) but do not achieve values inside the elliptic region. More general initial

data is more difficult to analyse. It is interesting to know what happens if the initial condition

contains elliptic regions. /,From a computational point of view, if a shock capturing method,

such as the ENO method in [6], [13] is to be used, discontinuities are typically spread out in

two or three points, hence points can sit in elliptic regions even if the exact solution jumps

across it.

One of the main ingredients of ENO schemes, and of many other non-oscillatory schemes

such as TVD (total-variation-diminishing) schemes [4], is the approximation in each of the

local characteristic fields. If the system becomes elliptic, local characteristic decomposition

is no longer available. In Section 2 we propose a flux splitting f(u) = f+(u) + f-(u), with

the corresponding Jacobi matrices _ having real and positive/negative eigenvalues. ThisOu

2



is similar to the flux splitting usedfor hyperbolic systems,for example the Lax-Friedrichs

splitting and the van Leer splitting [19]. The hyperbolic ENO operator is then applied

separatelyon f+(u), and on f-(u),, using the componentversion in the elliptic regions,
sincethe characteristicdecompositionsof 0f_(u) have no physical meanings in such regions•au

This idea is described in the next section. In Section 3 we numerically test the scheme on

the van der Waals equation (1.2)-(1.3). We observe convergence with good resolution to

weak solutions for various Riemann problems• We then numerically check that these weak

solutions are admissible as the viscosity-capillarity limits by computing (1.4) with a sequence

of decreasing e. We also compute the solution with smooth initial conditions, and observe

the interesting phenomena of the shrinking of elliptic regions if they are present in the initial

conditions.

2 The Numerical Scheme

We st_t with a flux splitting

f(u) = f+(u) + f-(u) (2.1)

with the requirement that the Jacobi matrix of+(u) has only real and positive eigenvalues,au

and likewise that the Jacobi matrix af-(u) has only real and negative eigenvalues. If the
au

system is hyperbolic, the simplest way to achieve such splitting is due to Lax-Friedrichs

1

f±(u) = 2(f(u) 4-au), a = maX,,uI I (2.2)

where Ai(u) are the eigenvaluesof the Jacobi matrix _. For specialclassesof hyperbolic

systems, such as the Euler equations of a polytropic gas, more sophiscated splittingswith

betterphysical meanings are available,e.g.,van Leer'ssplitting[19].For an ellipticsystem,

the simple splitting(2.2)no longer works. In fact,any splittingwith the Jacobi matrices

_'+(u)and af-(u) commuting with each other, as is the case in (2.2),will probably fail,
8u @u

because commuting matrices with distincteigenvaluescan be simultaneously diagonalized,

hence the eigenvaluesof their sum are simply the sum of their corresponding eigenvalues.

However, a splittingsimilarto (2.2)with the scalara replaced by a diagonal matrix:

fa=(u)---12(f(u)4-_u), (oi )
O_2

= . (2.3)

Otrn



can usually yield a required splitting.

equation (1.2) can be split successfully using (2.3) with:

For example, the flux f(u) in the van der Waals

and

a2=max max 0, , al=a2+M (2.4)
,_ 2

M = a_x _/m=(0,V'(_)), a > 2 (2.5)

The idea is to make an ansatz g(u) = M(v, O)T, then try to find the smallest possible M

such that the Jacobi matrices o(f(u):kg(u)) both have real and distinct eigenvalues. This leads
Ou

to M given by (2.5). Once this is done, it is easy to use the Lax-Friedrichs idea, i.e., to add

and substract au with a suitable a, to accomplish the splitting.

Equipped with the splitting (2.1), one can then apply any successful hyperbolic approxi-

mation techniques separately to f+(u) and t-(u). The only exception is that characteristic

decompositions should not be performed in elliptic regions, since the characteristic directions

of sf+(u) and af-(u) do not have any physical meaning. In this paper we apply the ENO
Ou au

techniques developped in [12], [13] to f+(u) and t-(u).

We summarize the algorithm briefly in the following. More details can be found in [12],

[13].
(1) The spatial operator

- f(u)x : -f+(u)x - f-(u)= (2.6)

is approximated by a conservative flux difference

L(u)j = L+(u)j + L-(u)j
1 ^+ ^+ 1 ^-

_ _.(_;+__ __ (2.7)- -_(ri+_- f___)- __)

where j is the grid index (the grids are located at x d = jAx), and the resulting ODE

0ui
Or, - L(u)j (2.s)

is discretized in the time variable t by a class of TVD (total-variation-diminishing) Runge-

Kutta type high order methods introduced in [12]. For example, the third order case is

u0) = u(°) + AtL(u(°))

u(_) __.(0)+ ¼u(1)+¼a_L(u(1))
.(3) I.(o)+ _.(_)+_a_L(u(_)) (2.9)

u,_+l u(3)U (0) U n ,
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In the following we will discuss the spatial operator L(u)j in (2.7) and suppress the time

variable _;

"± (2.7) approximate(2) The numerical fluxes fji½ in h+(xi+½) to high order, where the

functions he(m) are defined implicitly by

i [-+_
f+(u(x)) = _ j,__ h_(_)d_ (2.10)

see [13] for the derivation, r-th order polynomial interpolation is used, based on Newton

differences. The approximation to h+(x) is carried out component by component. In the

following we will use plain letters to represent one component of the corresponding vector in

bold letters, and we will suppress the superscripts +. As is pointed out in [13], there is no

need to construct the function h(z) or its Newton differences explicitly: one can simply use

the difference tables of f(u(m)). If the undivided differences of f(u(x)) are computed by

f[j,0] : f(uj) (2.11)
ftj, k]= f[j + z,k- 1]- f[j, k- 1], k = 1,...,r

where r is the order of the interpolation polynomial, then the numerical flux ]j+½ is obtained

by

?j+_= _ o(i- j, k)f[_,k] (2.12)
k=O

where i is the left-most point in the stencil used to approximate ]i+½, and O(s, k) is defined

by

I o+ko+k

O(_,k)- (k + i)! _,:. ,:.l-I(-P) (2.13)

The small matrix C is independent of the flux, hence can be computed only once and

then stored. The reader can easily check that (2.12)-(2.13) gives the correct interpolant

approximation to the function h,(m).

What distinguishes ENO from other finite difference methods is the adaptive stencil

idea. This idea is realized through the choice of i, the left-most point in the stencil used

to approximate ]j+_. We start with i = j for computing ]++_ or i = j + 1 for computing

]_+½. This is due to upwinding, since the eigenvalues of _ are all positive, hence the

information for f+(u) propagates to the right, likewise the information for f-(u) propagates

to the right. The stencil is then expanded point by point, according to the principle of

choosing the smaller in absolute value of the two relevant differences:
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if (abs(f[i,k]).gt.abs(f[i- 1, k]))i = i- 1 (2.14)

for k = 1, ..., r.

A factor can be introduced in (2.14) to bias towards the choice of a linearly stable centered

stencil [14]. This modification can enhance the accuracy in some cases but may cause some

over-compression effects [14]. Since for nonlinear systems the original ENO scheme works

well numerically [6], [13], we do not use this modification in this paper.

The scheme described above is uniformly high order in space and time, measured by local

truncation error analysis.

Remark 2.1 Since the schemes described above are conservative, any converged solution

will be a weak solution of (1.1). It is more difficult to show that the limit solutions are

admissible. If we take r, the order of the interpolating polynomial, to be zero, and use the

splitting (2.1)-(2.2) for a hyperbolic system, we recover the classical Lax-Friedrichs scheme.

It is well known that the Lax-Friedrichs scheme can be rewritten as a centered scheme

plus a dissipation term approximately equal to ½aAxu_. If we use the splitting of the

form (2.3), we can still think about it as a centered scheme plus a dissipation term of the

form ½&Axu_. It is then reasonable, cf. [16], [2], to expect that the scheme converges to

the admissible weak solutions. Ample numerical tests should be performed to assess the

convergence and admissability for higher order schemes. The numerical examples in Section

3 are preliminary results in this direction.

Remark 2.2 If some fractional step method (e.g. Strang [18]) is used on the splitting

(2.1), we end up with a scheme of the form (see (2.7)):

u "+_ = (I + AtL+)(I+AtL-)u " (2.15)

(for the next time step the two operators may reverse order). For a linear or nonlinear

problem with smooth solutions, it is very easy to choose stable operators (I + AtL*), due

to the hyperbolicity of f+(u) in (2.1). However, this does not necessarily mean that the

scheme (2.15) is stable, since (I + AtL ±) may not commute with each other and may not be

simultaneously diagonalizable. If the operators satisfy the more restrictive condition

]1I + AtL+I] _< 1 + O(At) IlI + AtL-II _ 1 + O(At)

for any consistent norm, the fractional step scheme (2.15) will be stable.

(2.16)
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3 Numerical Examples

We use the van der Waals equation (1.2)-(1.3) with RT = 1, a = 0.9 and b = 0.25. The

graph of the corresponding p(w) is in Figure 1. The system is elliptic for a _< w < fl,

where a = 0.574912 and fl = 1.036251. The so-called Maxwell line BE in Figure 1, where

the two shaded areas are equal, intersects the curve of p(w) at w = rn = 0.494273 and

w = M = 1.405065. The horizontal lines AD and CF in Figure 1 yield 3' = 0.483100 and

6 = 1.918618.

We use the third order, i.e. (2.9) and (2.12) with r = 3, ENO scheme, described in

Section 2. If the computational cell is contained completely inside one of the hyperbolic

regions w < a or w _> f_, we use characteristic decompositions (the ENO-LF algorithm

described in [12], [13]). Otherwise the component by component approximation described

in Section 2 is used. The splitting used is (2.3)-(2.5) with a = 2.2. The time step At is

restricted by a CFL number 0.6, i.e. At < 0.6(p( ou ) -{- P('_u u))Ax where p(A) is the

spectral radius of A.

All the computations are performed by using a sequence of refined meshes to verify

convergence, although we typically only show the graphs for one or two fixed meshes.

We first compute several Riemann problems (1.5):

(1) (vz,,wr.) = (1,m), (vR, wR) = (1, M) where m and M are the Maxwell values de-

fined above. This initial condition satisfies the Rankine-Hugoniot condition for a stationary

jump. Physical principles (Maxwell equal area rule) and many admissibility criteria (e.g.

the viscosity-capillarity criterion in [15], see (1.4)) indicate that this is an admissible jump.

Our numerical result shows a stable, sharp jump for this case, Figure 2. We remark that

here and in what follows, the numerical solution usually has one or two transition points

in the elliptic region for the phase jump. Apparently they do not cause any trouble to the

computation.

(2) (vr_,wL) = (1,0.54), (vR,wR) = (1,0.54). This initial condition also satisfies the

Rankine-Hugoniot condition for a stationary jump, but physical principles and many admis-

sibility criteria (e.g. the viscosity-capillarity criterion in [15], see also [10]) indicate that this

is not an admissible jump. Our numerical result shows the evolution of this jump into a

more complicated structure of jumps, Figure 3a, apparently due to the inherent numerical

viscosity of the scheme (see Remark 2.1). The solution exibits oscillatory behaviors near the

phase boundary, Figure 3a. This is unpleasant but not surprising since we used component

by component approximations in cells involving elliptic regions, hence during the process of

one wave sphtting into two or more waves, one or more of them being hyperbolic, oscillations

occur as a failure of recognition of the corresponding characteristic fields. Similar oscillations



alsoappearfor hyperbolic systems if a component by component approximation is used (see,

e.g. [1]). The oscillations become smaller and more confined when the number of grids is

increased (Figure 3b), indicating the convergence of the scheme even with these oscillations.

The background of Figure 3a is computed by the same scheme with 2000 points. It agrees

with the result with 4000 points hence can be considered as a converged solution. In order

to check whether this weak solution is admissible as a viscosity-capillarity limit, we plot

in Figure 3c the numerical solutions of (1.4), for A = ¼, with e = 0.1,0.01,0.001 and the

solution of our scheme for (1.2). The solutions to (1.4) are computed by the standard fourth

order centered scheme with the classical fourth order Runge-Kutta time discretization. We

verify adequate resolution for the solution of (1.4) for each fixed e by repeatedly refining the

mesh until the solutions do not change to visual inspection (the largest number of grid points

used is 8000). Clearly we can see the convergence of the solutions of (1.4) to our solution

when e _ 0 + in Figure 3c.

(3) (VL, WL) = (1, 0.45), (VR, wR) = (2, 1.5 i. This case is somewhat easier to compute than

the previous case, since the initial condition is not a steady nonadmissible weak solution.

Figure 4a shows the result with 200 grid points on a background of a converged solution

with 2000 grid points. Figure 4b shows the convergence as e --* 0 + of the solutions of the

viscosity-capillarity equation (1.4) to our solution.

We then compute the solutions for smooth initial conditions:

(1) (v°(m),w°(z)) = (1 -0.5con(m),1 + 0.5sin(m)). This initial condition crosses the

elliptic regions (Figure 5). The solution gradually evolves into piecewise smooth solutions

contained entirely inside one of the two hyperbolic regions w < a and w >/3, connected by

jumps over the elliptic regions (phase transitions). This seems to agree with the physical

intuition.

(2) (v°(m),w°(m)) = (1 - 0.5cos(m),0.8 + 0.2sin(:r)). This initial condition is entirely

contained in the elliptic region. However, similar to the previous case, the solution gradually

evolves into piecewise smooth solutions separated by phase transitions, Figure 6. Notice that

during the evolution oscillations are generated inside the elliptic regions, presumably due to

the inherent instability of the equation in those regions. These oscillations fade out once the

solution evolves into the hyperbolic regions.

4 Concluding Remarks

Numerical methods for solving systems of conservation laws of mixed hyperbolic-elliptic

type are investigated, through a flux splitting to write the physical elliptic flux as a sum
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of two hyperbolic fluxes with positive/negative eigenvalues, then to apply the essentially

non-oscillatory (ENO) high order finite difference methods on each of them. The method,

in the simplest first order case, is equivalent to adding a numerical dissipation term with

a diagonal dissipation matrix. The numerical results on the van der Waals equation of gas

dynamics indicate that the method can resolve phase boundaries well and can be used as a

tool to study the evolution of elliptic regions. More numerical tests on different mixed type

equations constitute current research.

Acknowledgment: I am grateful to Haitao Fan and Din-Yu Hsieh for bringing my attention

to the mixed type problems and for many helpful discussions.
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Figure 2: Maxwell solution, tvz,,wL) = (1,m), (va, wa) = (1, M), t=25. 200 points (plus)
and the exact solution (solid line). Here and in what follows, the region between the two

dashed lines is elliptic.
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Figure 3: (vz,,wr.) = (1,0.54), (vR, wR) = (1,0.54), t=4. 3a: 200 points (plus) and 2000
points(solid line); 3b: 2000 points; 3c: centered solutions of (1.4) with e = 0.1,0.01,0.001,
and ENO solution for (1.2).
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Figure 5: (v°(m),w°(z)) = (1 - 0.5cos(x), 1 + 0.5sin(m)). 400 grid points, t=0, .2, .4, .6, .8,

1, 1.2, 1.4, 1.6, 1.8, 2.
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Figure 6: (v°(x),w°(z)) -- (1 -0.Scos(x),O.8 + 0.2sin(z)). 400 grid points t--0, .2, .4, .6,
.8, 1, 1.2, 1.4, 1.6, 1.8, 2.
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